a2 United States Patent

Dai et al.

US009235444B2

US 9,235,444 B2
*Jan. 12, 2016

(10) Patent No.:
(45) Date of Patent:

(54) DYNAMICALLY ADJUSTING GLOBAL HEAP
ALLOCATION IN MULTI-THREAD
ENVIRONMENT

(71) Applicant: International Business Machines
Corporation, Armonk, NY (US)

(72) Inventors: Xiao Jun Dai, Beijing (CN); Rui Bo
Han, Beijing (CN); Wei Liu, Beijing
(CN); Zhi Da Luo, Beijing (CN)

(73) Assignee: International Business Machines

Corporation, Armonk, NY (US)
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by O days.

This patent is subject to a terminal dis-
claimer.

(21) Appl. No.: 14/487,139

(22) Filed: Sep. 16, 2014
(65) Prior Publication Data
US 2015/0007195 A1l Jan. 1, 2015

Related U.S. Application Data
(63) Continuation of application No. 13/851,540, filed on

Mar. 27, 2013.
(30) Foreign Application Priority Data
Mar. 28,2012 (CN) .cocvveriirrercenee 2012 1 0086688
(51) Imt.ClL
GOG6F 9/46 (2006.01)
GO6F 12/00 (2006.01)
(Continued)

(52) US.CL
CPC oo GOGF 9/5016 (2013.01); GOGF 12/02
(2013.01); GOGF 12/0284 (2013.01); GO6F
12/023 (2013.01)

Computation
System 100

(58) Field of Classification Search
None
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

6,219,772 Bl 4/2001 Gadangi et al.
6,427,195 Bl 7/2002 McGowen et al.
6,848,033 B2 1/2005 Joseph et al.
(Continued)
OTHER PUBLICATIONS

Attardi et al., “A Comparison of Memory Allocators in Multiproces-
sors,” Oracle Corporation, Jun. 2003, 6 pages. dsc.sun.com/solaris/
articles/multiproc/multiproc.html.

(Continued)

Primary Examiner — Tammy Lee
(74) Attorney, Agent, or Firm — Yee & Associates, P.C.

(57) ABSTRACT

Global heap allocation technologies in a multi-thread envi-
ronment, and particularly a method for dynamically adjusting
global heap allocation in the multi-thread environment, and
more particularly to a method and system for dynamically
adjusting global heap allocation by monitoring conflict
parameters of the global heap allocation method. Specifically,
a method of dynamically adjusting global heap allocation in
multi-thread environment, comprising: identifying a global
heap allocation method in an application program; judging
whether the global heap allocation method is a multi-thread
conflict hot point; and using a local stack to allocate memory
space requested by the global heap allocation method in
response to a “yes” judging result. The method is adapted to
purposefully dynamically adjust the intrinsic global heap
allocation method in the program according to a real-time
running state, reduce the lock contention on the global heap,
and effectively improve a resource allocating efficiency and a
resource utilization rate.

7 Claims, 5 Drawing Sheets

Hug
RAK System

kbl

Hard Drive Hard Ditve
Controtier 103 14

fnard Saard
Controlfer 196 | | 1

Serial Peripharal
Equipment 112

Paratiel
Peripheral
Equipmsnt 113

tHaplay fispiay
Controlter 108 i1

i

US 9,235,444 B2
Page 2

(51) Int.CL

GO6F 9/50
GO6F 12/02

(56)

7,035,989
7,111,294
7,240,169
7,558,935
8,024,505
2002/0095453
2002/0199069
2004/0034742
2008/0120627
2008/0134158
2011/0119660
2013/0263149

(2006.01)
(2006.01)

References Cited

U.S. PATENT DOCUMENTS

Bl
B2
B2
BL*
B2
Al
Al
Al*
Al*
Al
Al*
Al

4/2006
9/2006
7/2007
7/2009
9/2011
7/2002
12/2002
2/2004
5/2008
6/2008
5/2011
10/2013

Hinker et al.
Steensgaard et al.
Dennie et al.
Boucheretal.
Dahlstedt et al.
Steensgaard et al.
Joseph et al.

Fieldetal.cccooennenne.
Krausscoocennin
Salz et al.

Tanakacocovvevennnne,
Dai et al.

711/170

711/132
719/328

717/149

OTHER PUBLICATIONS

Michael, “Scalable Lock-Free Dynamic Memory Allocation,” Proc.
of the ACM SIGPLAN Conference on Programming Language
Design and Implementation, vol. 39, Issue 6, May 2004, pp. 35-46.
Tallent et al., “Effective Performance Measurement and Analysis of
Multithreaded Applications”, Proc. of the 14th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, Feb.
2009, 11 pages.

Xu et al., “Dynamic Instrumentation of Threaded Applications”,
Proceedings of 7th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, May 1999, 11 pages.

Office Action, dated May 20, 2015, regarding U.S. Appl. No.
13/851,540, 25 pages.

* cited by examiner

U.S. Patent

Compulation

System 180
g

US 9,235,444 B2

ROM
jlix]

Jan. 12, 2016 Sheet 1 of 5
Hard Drive Hard Drive
Controller 105 110
Keyboard Keyboard
Controller 186 11

Serial interface

Serial Periphersl

Controlier 187 Equipment 112
Paraliel interface Parallel
Controfier 108 Peripheral
o Equipment 113
Display Display
Controtler 168 114

Fig. 1

U.S. Patent Jan. 12, 2016 Sheet 2 of 5 US 9,235,444 B2

BOA L

" i E :
nopd

L peas]

g pEa)
N pERAYL

gy peangg

Lock usad to synchronize the
Hocation of mamary

/""l/” ‘G\;—‘\\\
< Global Memory Heap ™

,

{

!
N

e

Hig. 2A

V7 peaniy
PN pEBIY L
ZhpTany

o ::.
705
@ [
[
-t b

o R L5

U.S. Patent Jan. 12,2016

Sheet 3 of 5

/}{}‘i
identify a global heap allocation

mathod

A muit§~threa
conflict hot point? -

303

Use a local stack to
aliocate memory space

US 9,235,444 B2

U.S. Patent

Jan. 12,2016 Sheet 4 of 5 US 9,235,444 B2
401
ldentify a global heap allpcation /
mathod
¢ 402
Modity the global heap /
aflocation method in a way
of code injection
¥ - 403
muitie Mo
thread conflict
.. Jiot point?
404
-~ Larger than an
- c Yes
upper limit space allowed >
~.by 8 local stack?
406
L o 405 //

Use the local stack to sliocate
the memory space

SHH, use the global heap o
aliocate the memory space

Fig. 4

U.S. Patent Jan. 12,2016 Sheet 5 of 5

US 9,235,444 B2

501
Y
ldentifying Module
X /A., 562
Judging Module
¥ 803

Adjusting Module

Fig. §

US 9,235,444 B2

1
DYNAMICALLY ADJUSTING GLOBAL HEAP
ALLOCATION IN MULTI-THREAD
ENVIRONMENT

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is a continuation of U.S. patent applica-
tion Ser. No. 13/851,540, filing date Mar. 27, 2013, which
claims the benefit of priority to Chinese Patent Application
No. CN201210086688.0, filing date Mar. 28, 2012. The con-
tents of both aforementioned applications are incorporated
herein by reference.

FIELD

The present invention relates to global heap allocation
technologies in multi-thread environment, and more specifi-
cally, to a method and system for dynamically adjusting glo-
bal heap allocation by monitoring conflict parameters of the
global heap allocation method.

BACKGROUND

At present, with the development of computer multi-core
technologies, a multi-thread program is applied more and
more extensively. There are two major problems with the
multi-thread environment: one is resource sharing, namely, a
plurality of threads share a physical memory of the same
entity; the other is resource synchronization, namely, the
multi-thread environment requires the physical memory of
the same entity to be accessed by only one thread at the same
time. As can be seen from the above, resource sharing and
resource synchronization are two requirements which are
contradictory to each other. On the premise of ensuring the
resource sharing, when the plurality of threads simulta-
neously request for allocation of the global heap, “lock con-
tention” will occur That is to say, a thread requesting later
must wait for being unlocked until the shared memory allo-
cation is completed by a thread that requests earlier, thereby
performing memory allocation. If the number of the threads
simultaneously requesting for memory allocation is too large,
the running speed of the program will drop, thereby causing
phenomena such as “breakdown” or even “system crash.”
FIG. 2A illustrates one example of this situation. As illus-
trated in FIG. 2A, the threads 1-N need to share the global
memory heap. As required by resource synchronization, allo-
cation of the global memory heap can be carried out for only
one thread at the same time, and other threads must be in a
locked state waiting for synchronization of the memory
resource.

There is a technical solution to the above problem in the
prior art, as illustrated in FIG. 2B, the shared global memory
heap in FIG. 2A is divided into a plurality of sub-heaps
Heapl-HeapN, and several threads are allocated for each
sub-heap. The technical solution indeed can ease the lock
contention to a certain degree, but each of the sub-heaps is
allocated with several threads, so the lock contention issue
still exists. More importantly, upon division of sub-heaps and
allocation of threads, it is impossible to know which threads
should be allocated to which sub-heaps so as to achieve the
best running effect. Hence, it often occurs that the sub-heap
Heap 1 is in an idle state whereas the sub-heap Heap 2 is
already in a lock contention state, thereby causing a waste of
the memory resource and a lot of memory fragments.

15

25

45

55

2
SUMMARY

In view of the above problems, one of objectives of the
present invention is to provide a method and system for
dynamically adjusting global heap allocation in multi-thread
environment.

According to one aspect of the present invention, there is
provided a method of dynamically adjusting global heap allo-
cation in multi-thread environment, comprising: identifying a
global heap allocation method in an application program;
judging whether the global heap allocation method is a multi-
thread conflict hot point; and using a local stack to allocate
memory space requested by the global heap allocation
method in response to a “yes” judging result.

According to one embodiment of the present invention,
wherein judging whether the global heap allocation method is
a multi-thread conflict hot point comprises:

Judging whether the global heap allocation method is a
multi-thread conflict hot point by monitoring the multi-thread
conflict parameters of the global heap allocation method in
real time, wherein the multi-thread conflict parameters com-
prise one or more of the following parameters: times of the
global heap allocation method having been called in a unit
time; the global memory space requested by the global heap
allocation method for allocation; and times of lock contention
of'the global heap allocation method having occurred in a unit
time.

According to another aspect of the present invention, there
is provided a system for dynamically adjusting global heap
allocation in multi-thread environment, comprising: identify-
ing module configured to identify a global heap allocation
method in an application program; judging module config-
ured to judge whether the global heap allocation method is a
multi-thread conflict hot point; and adjusting module config-
ured to use the local stack to allocate the memory space
requested by the global heap allocation method in response to
a “yes” judging result.

According to the method or system provided by the present
invention, whether to use the local stack to allocate the
memory space requested by the original global heap alloca-
tion method is decided by judging whether the global heap
allocation method in the program is a multi-thread conflict
hot point, so as to pertinently and dynamically adjust the
intrinsic global heap allocation method in the program
according to a real-time running state, reduce the lock con-
tention occurring to the global heap, and effectively improve
resource allocating efficiency and resource utilization rate.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

Through the more detailed description of some embodi-
ments of the present disclosure in the accompanying draw-
ings, the above and other features of the present disclosure
will become more apparent, wherein the same reference gen-
erally refers to the same or like components in the embodi-
ments of the present disclosure. Among the figures,

FIG. 1 illustrates a block diagram of an exemplary com-
puter system 100 adapted to implement embodiments of the
present invention;

FIG. 2A illustrates a situation of lock contention when a
plurality of threads share a global memory heap;

FIG. 2B illustrates a schematic view of dividing the shared
global memory heap into a plurality of shared memory sub-
heaps to address the problem illustrated in FIG. 2A in the
prior art;

US 9,235,444 B2

3

FIG. 3 illustrates a flow chart of a method of dynamically
adjusting the global heap allocation in multi-thread environ-
ment according to one embodiment of the present invention;

FIG. 4 illustrates a flow chart of a method of dynamically
adjusting the global heap allocation in multi-thread environ-
ment according to another embodiment of the present inven-
tion; and

FIG. 5 illustrates a block diagram of a system for dynami-
cally adjusting the global heap allocation in multi-thread
environment according to a further embodiment of the
present invention.

DETAILED DESCRIPTION

In the text below, the method and system provided by the
present invention will be described in detail by way of
embodiments with reference to the figures.

As will be appreciated by one skilled in the art, aspects of
the present invention may be embodied as a system, method
or computer program product. Accordingly, aspects of the
present invention may take the form of an entirely hardware
embodiment, an entirely software embodiment (including
firmware, resident software, micro-code, etc.) or one embodi-
ment combining software and hardware aspects that may all
generally be referred to herein as a “circuit,” “module” or
“system.” Furthermore, aspects of the present invention may
take the form of a computer program product embodied in one
or more computer readable medium(s) having computer read-
able program code embodied thereon.

Any combination of one or more computer readable medi-
um(s) may be utilized. The computer readable medium may
be a computer readable signal medium or a computer read-
able storage medium. A computer readable storage medium
may be, for example, but not limited to, an electronic, mag-
netic, optical, electromagnetic, infrared, or semiconductor
system, apparatus, or device, or any suitable combination of
the foregoing. More specific examples (a non-exhaustive list)
of the computer readable storage medium would include the
following: an electrical connection having one or more wires,
a portable computer diskette, a hard disk, a random access
memory (RAM), a read-only memory (ROM), an erasable
programmable read-only memory (EPROM or Flash
memory), an optical fiber, a portable compact disc read-only
memory (CD-ROM), an optical storage device, a magnetic
storage device, or any suitable combination of the foregoing.
In the context of this document, a computer readable storage
medium may be any tangible medium that can contain, or
store a program for use by or in connection with an instruction
execution system, apparatus, or device.

A computer readable signal medium may include a propa-
gated data signal with computer readable program code
embodied therein, for example, in baseband or as part of a
carrier wave. Such a propagated signal may take any of a
variety of forms, including, but not limited to, electro-mag-
netic, optical, or any suitable combination thereof. A com-
puter readable signal medium may be any computer readable
medium that is not a computer readable storage medium and
that can communicate, propagate, or transport a program for
use by or in connection with an instruction execution system,
apparatus, or device.

Program code embodied on a computer readable medium
may be transmitted using any appropriate medium, including
but not limited to wireless, wireline, optical fiber cable, RF,
etc., or any suitable combination of the foregoing.

Computer program code for carrying out operations for
aspects of the present invention may be written in any com-
bination of one or more programming languages, including

10

15

20

25

30

35

40

45

50

55

60

65

4

an object oriented programming language such as Java,
Smalltalk, C++ or the like and conventional procedural pro-
gramming languages, such as the “C” programming language
or similar programming languages. The program code may
execute entirely on the user’s computer, partly on the user’s
computer, as a stand-alone software package, partly on the
user’s computer and partly on a remote computer or entirely
on the remote computer or server. In the latter scenario, the
remote computer may be connected to the user’s computer
through any type of network, including a local area network
(LAN) or a wide area network (WAN), or the connection may
be made to an external computer (for example, through the
Internet using an Internet Service Provider).

Aspects of the present invention are described below with
reference to flowchart illustrations and/or block diagrams of
methods, apparatus (systems) and computer program prod-
ucts according to embodiments of the invention. It will be
understood that each block of the flowchart illustrations and/
or block diagrams, and combinations of blocks in the flow-
chart illustrations and/or block diagrams, can be imple-
mented by computer program instructions. These computer
program instructions may be provided to a processor of a
general purpose computer, special purpose computer, or other
programmable data processing apparatus to produce a
machine, such that the instructions, which execute via the
processor of the computer or other programmable data pro-
cessing apparatus, create means for implementing the func-
tions/acts specified in the flowchart and/or block diagram
block or blocks.

These computer program instructions may also be stored in
a computer readable medium that can direct a computer, other
programmable data processing apparatus, or other devices to
function in a particular manner, such that the instructions
stored in the computer readable medium produce an article of
manufacture including instruction means which implement
the function/act specified in the flowchart and/or block dia-
gram block or blocks.

The computer program instructions may also be loaded
onto a computer, other programmable data processing appa-
ratus, or other devices to cause a series of operational steps to
be performed on the computer, other programmable appara-
tus or other devices to produce a computer implemented
process such that the instructions which execute on the com-
puter or other programmable apparatus provide processes for
implementing the functions/acts specified in the flowchart
and/or block diagram block or blocks.

With reference now to FIG. 1, FIG. 1 illustrates an exem-
plary computer system 100 which is applicable to implement
the embodiments of the present invention. As illustrated in
FIG. 1, the computer system 100 may include: CPU (Central
Process Unit) 101, RAM (Random Access Memory) 102,
ROM (Read Only Memory) 103, System Bus 104, Hard Drive
Controller 105, Keyboard Controller 106, Serial Interface
Controller 107, Parallel Interface Controller 108, Display
Controller 109, Hard Drive 110, Keyboard 111, Serial Periph-
eral Equipment 112, Parallel Peripheral Equipment 113 and
Display 114. Among above devices, CPU 101, RAM 102,
ROM 103, Hard Drive Controller 105, Keyboard Controller
106, Serial Interface Controller 107, Parallel Interface Con-
troller 108 and Display Controller 109 are coupled to the
System Bus 104. Hard Drive 110 is coupled to Hard Drive
Controller 105. Keyboard 111 is coupled to Keyboard Con-
troller 106. Serial Peripheral Equipment 112 is coupled to
Serial Interface Controller 107. Parallel Peripheral Equip-
ment 113 is coupled to Parallel Interface Controller 108. And,
Display 114 is coupled to Display Controller 109. It should be
understood that the structure as illustrated in FIG. 1 is only for

US 9,235,444 B2

5

the exemplary purpose rather than any limitation to the
present invention. In some cases, some devices may be added
to or removed from the computer system 100 based on spe-
cific situations.

FIG. 3 illustrates a flow chart of a method of dynamically
adjusting the global heap allocation in multi-thread environ-
ment according to one embodiment of the present invention.
The method illustrated in FIG. 3 starts with step 301 at which
a global heap allocation method in an application program is
identified.

First, two concepts need to be clarified: global heap and
local stack. The global heap is also called global memory
heap and refers to memory space shared by a plurality of
threads, whereas the local stack refers to memory space
exclusive to each of the plurality of threads. Usually, the
global heap is designated and allocated by application pro-
gram developers during programming, for example, in C
language, it is usual to use malloc instructions to allocate
memory from the global heap. The local stack is automati-
cally allocated during application program compiling, and
the program developers usually do not designate allocation of
the local stack during coding the program, which is also
unnecessary. Certainly, it is theoretically possible to allocate
memory from the local stack by way of alloca instructions, for
example.

A concept to be defined next is a global heap allocation
method. The global heap allocation method refers to a
method, function or functionality in the program code for
allocating memory space from the global heap. For example,
malloc (...)is an example ofa global heap allocation method
in C language. Those skilled in the art should appreciate that
specific expression forms of the global heap allocation
method vary with programming languages or source codes or
object codes. For example, in advanced language such as Java
or C++, a statement such as “Object a=new Object ()” is
usually used to achieve the global heap allocation, and it is
also a global heap allocation method.

The prior art has already provided a technical solution
regarding a method of identifying different types in a program
code and scope of the method. The technical solution will not
be detailed herein. It should be noted that, at step 301, the
global heap allocation method can be identified either by
scanning the source code of the program or scanning the
object code of the program, which depends on the type and the
format of the source code and object code of the programming
language.

Next, at step 302 is judged whether the global heap allo-
cation method is a multi-thread conflict hot point. The multi-
thread conflict hot point herein means that in the multi-thread
environment, execution of the global heap allocation method
will make lock contention of the global heap allocation
prominent, which indicates a need to adjust the global heap
allocation method, i.e., allowing the program to quit from
lock contention upon execution of the global heap allocation
method. Embodiments about judging whether the global heap
allocation method is a multi-thread conflict hot point will be
described in detail with reference to FIG. 4.

According to one embodiment of the present invention, at
step 303 a mode of enabling the program to quit from the lock
contention upon execution of the global heap allocation
method is using the local stack to allocate the memory space
requested by the identified global heap allocation method
(namely, the original global heap allocation method). As
stated above, the local stack refers to memory space exclusive
to each of the plurality of threads, so using the local stack to
allocate the memory space requested by the original global
heap allocation method does not affect other threads or make

10

20

25

30

40

45

50

6

lock contention in the global memory heap more acute; on the
contrary, it reduces the conflict degree of lock contention of
the original global memory heap.

According to one embodiment of the present invention, the
identified global heap allocation method in the application
program is an if-condition branch statement including the
local stack allocation and the global heap allocation, and the
if-condition is whether the global heap allocation method is a
multi-thread conflict hot point. A specific example of the
global heap allocation method including the if-condition
branch statement is presented as follows:

If (this memory allocation is not the hot point) {
instrument (mlloca(...)); // still allocate memory from global heap
else{
allocal(...); // change the memory allocation to thread

// local stack

The above global heap allocation method including the
if-condition branch statement means that if the memory allo-
cation is not a multi-thread conflict hot point, the global heap
allocation method is executed; otherwise, the local stack allo-
cation method is executed.

According to one embodiment of the present invention, the
above global heap allocation method including the if-condi-
tion branch statement is coded by a program developer during
programming. According to another embodiment of the
present invention, the above global heap allocation method
including the if-condition branch statement is obtained by
modifying the original global heap allocation method in the
application program in a way of code injection. In this case,
the original global heap allocation method (namely, the glo-
bal heap allocation method coded by the program developer)
can be for example

malloc(. . .); //allocate memory from global heap

To sum up, by method illustrated in FIG. 3, whether to use
the local stack to allocate the memory space requested by the
original global heap allocation method is decided by judging
whether the global heap allocation method in the program is
a multi-thread conflict hot point, so as to pertinently and
dynamically adjust the intrinsic global heap allocation
method in the program according to a real-time running state,
reduce the lock contention on the global heap, and effectively
improve resource allocating efficiency and resource utiliza-
tion rate.

FIG. 4 illustrates a flow chart of a method of dynamically
adjusting the global heap allocation in multi-thread environ-
ment according to another embodiment of the present inven-
tion.

The method illustrated in FIG. 4 starts with step 401. At
step 401, the global heap allocation method in the application
program is identified. Step 401 corresponds to step 301 in the
method illustrated in FIG. 3, and thus will not be detailed
herein. At step 402, the global heap allocation method is
modified by code injection so that the original global heap
allocation method is modified as an if-condition branch state-
ment including the local stack allocation and the global heap
allocation. The example of the specific if-condition branch
statement is already presented in the preceding text and is not
repeated here. It should be noted that the code injection in step
402 is not a requisite step. Upon programming, the program
developer can code the global heap allocation method as the
global heap allocation method including the if-condition
branch statement so that the step of code injection is not
needed. It should be further noted that, modification of the

US 9,235,444 B2

7

global heap allocation method by means of code injection
does not mean certainty to modify the original program code
itself. Alternatively, “if-condition branch logic” is added only
during compiling or actual running, whereas the original
program code does not change. Those skilled in the art should
appreciate that code injection is technical means in the prior
art. Details for implementing code injection will not be
described here. Furthermore, the code injection can be imple-
mented either at the source code level or at the object code
level, which depends on a specific program code type.

Next, at step 403 is judged whether the global heap allo-
cation method is a multi-thread conflict hot point. It is appre-
ciated that step 403 corresponds to step 302 in the method
illustrated in FIG. 3. According to one embodiment of the
present invention, whether the global heap allocation method
is a multi-thread conflict hot point is judged by monitoring the
multi-thread conflict parameter of the global heap allocation
method in real time. According to one embodiment of the
present invention, the multi-thread conflict parameters com-
prise one or more of the following parameters: times of the
global heap allocation method having been called in a unit
time; the global memory space requested by the global heap
allocation method for allocation; and times of lock contention
of'the global heap allocation method having occurred in a unit
time. It should be noted that the above parameter types and
quantity as monitored are not fixed. On the basis of under-
standing of the idea of the present invention, those skilled in
the art can surely introduce many other types of parameters,
such as lock wait time. Whether the global heap allocation
method is a multi-thread conflict hot point or not can be
judged by means of parameter values monitored during the
program running process according to a preset rule. A specific
example of the preset rule is as follows: “if (lock contention
times/ method call times)>90% and times of the method
having been called in the unit time >1000, then it is believed
that the global heap allocation method is a multi-thread con-
flict hot point.” Those skilled in the art should appreciate that
the rule can be set in many combinations or changes accord-
ing to the difference of specific program types, code types and
program running environments. Furthermore, the global heap
allocation method with the if-condition branch statement rep-
resents itself as a setting of rule. The concept of the present
invention will not be affected no matter where there is another
preset rule.

According to one embodiment of the present invention, the
above monitoring of parameters is triggered regularly, for
example, the parameters are monitored once per 5 seconds or
per 2 seconds. According to another embodiment of the
present invention, the unit time for the parameters can be
preset, for example, the times of the method having been
called and the times of the lock contention having occurred
are obtained per 3 seconds. Since the monitoring of the
parameters is performed during runtime of the program in
real-time, the global heap allocation can be adjusted dynami-
cally according to the monitoring results in real-time running.
It is possible that memory is allocated from the local stack at
one time, whereas the memory allocation is adjusted such that
memory is allocated from the global heap when monitoring is
triggered next time.

It should be noted that, the monitoring of the above types of
parameters can be implemented by technical means in the
prior art. Different monitoring means depend on specific
implementation platforms or running environments. For
example, the parameter “times of the global heap allocation
method having been called in a unit time” can be obtained by
using the tool tprofon an AIX platform, and obtained by using
operafile on a linux platform. The parameter “times of lock

10

15

20

25

30

35

40

45

50

55

60

65

8

contention of the global heap allocation method having
occurred in a unit time” can be obtained by using Java Lock
Monitor in Java, and obtained by using Lock Trace of DB2
under an environment of DB2.

Ifthe judging result at step 403 is “yes,” the flow goes on to
step 404 at which is judged whether the memory space
requested by the global stack allocation method is larger than
an upper limit space allowed by the local stack for allocation.
As the memory space allowed by the local stack usually has a
certain upper limit, which depends on different platform envi-
ronment. For example, a default space of the local stack is
sized as 1M in Window environment, 2M in Linux environ-
ment, 0.75M for 32-bits application and 1.5M for 64-bits
application in AIX environment. Those skilled in the art
should understand that although different platforms might
have default upper limit space of the local stack, a user can
voluntarily set or change the size of the default space. An
objective of judgment at step 404 is: if the global heap allo-
cation method is a multi-thread conflict hot point but the
memory space requested by the global heap allocation
method for allocation exceeds the default upper limit space of
the local stack, then the flow needs to go forward to step 406
(i.e., the judging result of step 404 is yes), and the global heap
is still used to allocate the memory space. If the judgment
result of step 404 is no, the flow goes to step 405 at which the
local stack is used to allocate the memory space requested by
the global heap allocation method.

If the judging result of step 403 is “no,” this indicates that
the global heap allocation method is not a multi-thread con-
flict hot point, so the flow goes to step 406, where the global
heap is still used to allocate the memory space.

Itshould be noted that, the upper limit space allowed by the
local stack for allocation can completely serve as a monitor-
ing parameter, that is, serve as a basis for judging whether the
global heap allocation method is a multi-thread conflict hot
point at step 403. In other words, the judgment at step 404 is
not requisite. The step is particularly illustrated in FIG. 4 in
order to illustrate possible changes to the technical solution
and embodiments in detail.

FIG. 5 illustrates a block diagram of a system for dynami-
cally adjusting the global heap allocation in multi-thread
environment according to a further embodiment of the
present invention. The system illustrated in FIG. 5 is on the
whole denoted by a system 500. Specifically, the system 500
comprises identifying module 501 configured to identify a
global heap allocation method in an application program;
judging module 502 configured to judge whether the global
heap allocation method is a multi-thread conflict hot point;
and adjusting module 503 configured to use the local stack to
allocate the memory space requested by the global heap allo-
cation method in response to a “yes” judging result. Those
skilled in the art should appreciate that the modules 501-503
in the system illustrated in FIG. 5 correspond to steps 301-303
in the method illustrated in FIG. 3, respectively. Details will
not be described here.

The flowchart and block diagrams in the Figures illustrate
the architecture, functionality, and operation of possible
implementations of systems, methods and computer program
products according to various embodiments of the present
invention. In this regard, each block in the flowchart or block
diagrams may represent a module, segment, or portion of
code, which comprises one or more executable instructions
for implementing the specified logical function(s). It should
also be noted that, in some alternative implementations, the
functions noted in the block may occur out of the order noted
in the figures. For example, two blocks illustrated in succes-
sion may, in fact, be executed substantially concurrently, or

US 9,235,444 B2

9

the blocks may sometimes be executed in the reverse order,
depending upon the functionality involved. It will also be
noted that each block of the block diagrams and/or flowchart
illustration, and combinations of blocks in the block diagrams
and/or flowchart illustration, can be implemented by special
purpose hardware-based systems that perform the specified
functions or acts, or combinations of special purpose hard-
ware and computer instructions.

The descriptions ofthe various embodiments of the present
invention have been presented for purposes of illustration, but
are not intended to be exhaustive or limited to the embodi-
ments disclosed. Many modifications and variations will be
apparent to those of ordinary skill in the art without departing
from the scope and spirit of the described embodiments. The
terminology used herein was chosen to best explain the prin-
ciples of the embodiments, the practical application or tech-
nical improvement over technologies found in the market-
place, or to enable others of ordinary skill in the art to
understand the embodiments disclosed herein.

What is claimed is:
1. A method of dynamically adjusting global heap alloca-
tion in multi-thread environment, comprising:
identifying a global heap allocation method in an applica-
tion program, wherein the global heap allocation
method is a method used by the application program to
allocate memory space from a global heap memory
space shared by a plurality of threads in the multi-
threaded environment;
judging whether the global heap allocation method is a
multi-thread conflict hot point by monitoring multi-
thread conflict parameters of the global heap allocation
method in real time, wherein the multi-thread conflict
parameters comprise one or more of the following
parameters:
(1) times of the global heap allocation method having
been called in a unit time;
(i1) an amount of the memory space requested by the
global heap allocation method for allocation;
(iii) times of lock contention of the global heap alloca-
tion method having occurred in a unit time; and
(iv) lock wait time waiting for a lock; and
using a local stack in lieu of the global heap memory space
to allocate the memory space requested by the global
heap allocation method in response to a judging result
that indicates that the global heap allocation method is
the multi-thread conflict hot point.

10

15

20

25

30

35

40

45

10

2. The method according to claim 1, further comprising:

using the global heap to allocate the memory space

requested by the global heap allocation method in
response to a judging result that indicates that the global
heap allocation method is not the multi-thread conflict
hot point.

3. The method according to claim 1, wherein using a local
stack to allocate memory space requested by the global heap
allocation method in response to a judging result that indi-
cates that the global heap allocation method is the multi-
thread conflict hot point comprises:

judging whether the memory space requested by the global

heap allocation method is larger than an upper limit
space allowed by the local stack for allocation in
response to the judging result that indicates that the
global heap allocation method is the multi-thread con-
flict hot point;

using the global heap to allocate the memory space

requested by the global heap allocation method in
response to the memory space requested by the global
heap allocation method being larger than the upper limit
space allowed by the local stack for allocation; and
using the local stack to allocate the memory space
requested by the global heap allocation method in
response to the memory space requested by the global
heap allocation method not being larger than the upper
limit space allowed by the local stack for allocation.

4. The method according to claim 1, wherein the identified
global heap allocation method in the application program is
an if-condition branch statement including the local stack
allocation and the global heap allocation, and the if-condition
is whether the global heap allocation method is the multi-
thread conflict hot point.

5. The method according to claim 4, wherein the if-condi-
tion branch statement is obtained by modifying the original
global heap allocation method in the application program in a
way of code injection.

6. The method according to claim 3, wherein a value of the
upper limit space allowed by the local stack for allocation is
a preset value not larger than a value of a maximum space of
the local stack.

7. The method according to claim 1, wherein the local stack
is a memory allocation space exclusive to each of a plurality
of threads, and the global heap is a memory allocation space
shared by the plurality of threads.

#* #* #* #* #*

